| 
 | 
 | 
An abundant number is an Integer 
 which is not a Perfect Number and for which 
| (1) | 
There are only 21 abundant numbers less than 100, and they are all Even.  The first Odd abundant number is
| (2) | 
| (3) | 
Define the density function
| (4) | 
| (5) | 
| (6) | 
A number which is abundant but for which all its Proper Divisors are Deficient is called a Primitive Abundant Number (Guy 1994, p. 46).
See also Aliquot Sequence, Deficient Number, Highly Abundant Number, Multiamicable Numbers, Perfect Number, Practical Number, Primitive Abundant Number, Weird Number
References
Deléglise, M.  ``Encadrement de la densité des nombres abondants.''  Submitted.
 
Dickson, L. E.  History of the Theory of Numbers, Vol. 1: Divisibility and Primality.
  New York: Chelsea, pp. 3-33, 1952.
 
Erdös, P.  ``On the Density of the Abundant Numbers.''  J. London Math. Soc. 9, 278-282, 1934.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/abund/abund.html
 
Guy, R. K.  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 45-46, 1994.
 
Singh, S.  Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem.
  New York: Walker, pp. 11 and 13, 1997.
 
Sloane, N. J. A.  Sequence
A005101/M4825
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Wall, C. R.  ``Density Bounds for the Sum of Divisors Function.''  In The Theory of Arithmetic Functions
  (Ed. A. A. Gioia and D. L. Goldsmith).  New York: Springer-Verlag, pp. 283-287, 1971.
 
Wall, C. R.; Crews, P. L.; and Johnson, D. B.  ``Density Bounds for the Sum of Divisors Function.''
  Math. Comput. 26, 773-777, 1972.
 
Wall, C. R.; Crews, P. L.; and Johnson, D. B.  ``Density Bounds for the Sum of Divisors Function.''
  Math. Comput. 31, 616, 1977.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein