A Map Projection.  The inverse equations for 
 are computed by iteration.  
Let the Angle of the projection plane be 
.  Define
![\begin{displaymath}
a=\cases{
0 & for $\theta_b={\textstyle{1\over 2}}\pi$\cr
...
...ver 2}}({\textstyle{1\over 2}}\pi-\theta_b)]} & otherwise.\cr}
\end{displaymath}](a_526.gif)  | 
(1) | 
 
For proper convergence, let 
 and compute the initial point by checking
![\begin{displaymath}
x_i=\left\vert{\mathop{\rm exp}\nolimits [-(\sqrt{x^2 + y^2} + a\tan x_i)\tan x_i]}\right\vert.
\end{displaymath}](a_528.gif)  | 
(2) | 
 
As long as 
, take 
 and iterate again.  The first value for which 
 is then the starting point. 
Then compute
![\begin{displaymath}
x_i=\cos^{-1}\{\mathop{\rm exp}\nolimits [-(\sqrt{x^2+y^2} + a\tan x_i)\tan x_i]\}
\end{displaymath}](a_532.gif)  | 
(3) | 
 
until the change in 
 between evaluations is smaller than the acceptable tolerance. The (inverse) equations are then
given by
 
© 1996-9 Eric W. Weisstein 
1999-05-25