| 
 | 
 | 
If 
 is a Root of the Polynomial equation
| (1) | 
| (2) | 
If 
 is an algebraic number of degree 
 satisfying the Polynomial
| (3) | 
Any number which is not algebraic is said to be Transcendental.
See also Algebraic Integer, Euclidean Number, Hermite-Lindemann Theorem, Radical Integer, Semialgebraic Number, Transcendental Number
References
Conway, J. H. and Guy, R. K.  ``Algebraic Numbers.''  In The Book of Numbers.  New York: Springer-Verlag,
  pp. 189-190, 1996.
 
Courant, R. and Robbins, H.  ``Algebraic and Transcendental Numbers.''  §2.6 in
  What is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.
  Oxford, England: Oxford University Press, pp. 103-107, 1996.
 
Hancock, H.  Foundations of the Theory of Algebraic Numbers.  Vol. 1: Introduction to the General Theory.  New York: Macmillan, 1931.
 
Hancock, H.  Foundations of the Theory of Algebraic Numbers.  Vol. 2: The General Theory.  New York: Macmillan, 1932.
 
Wagon, S.  ``Algebraic Numbers.''  §10.5 in Mathematica in Action.  New York: W. H. Freeman, pp. 347-353, 1991.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein