An antisymmetric matrix is a Matrix which satisfies the identity 
  | 
(1) | 
 
where 
 is the Matrix Transpose.  In component notation, this becomes
  | 
(2) | 
 
Letting 
, the requirement becomes 
  | 
(3) | 
 
so an antisymmetric matrix must have zeros on its diagonal.  The general 
 antisymmetric matrix is of the form
![\begin{displaymath}
\left[{\matrix{
0 & a_{12} & a_{13}\cr
-a_{12} & 0 & a_{23}\cr
-a_{13} & -a_{23} & 0\cr}}\right].
\end{displaymath}](a_1094.gif)  | 
(4) | 
 
Applying 
 to both sides of the antisymmetry
condition gives
  | 
(5) | 
 
Any Square Matrix can be expressed as the sum of symmetric and antisymmetric parts.  Write
  | 
(6) | 
 
But
![\begin{displaymath}
{\hbox{\sf A}}=\left[{\matrix{
a_{11} & a_{12} & \cdots & a...
...ots & \vdots\cr
a_{n1} & a_{n2} & \cdots & a_{nn}\cr}}\right]
\end{displaymath}](a_1098.gif)  | 
(7) | 
 
![\begin{displaymath}
{\hbox{\sf A}}^{\rm T} =\left[{\matrix{
a_{11} & a_{21} & \...
...ts & \vdots\cr
a_{1n} & a_{2n} & \cdots & a_{nn}\cr}}\right],
\end{displaymath}](a_1099.gif)  | 
(8) | 
 
so
![\begin{displaymath}
{\hbox{\sf A}}+{\hbox{\sf A}}^{\rm T}=\left[{\matrix{
2a_{1...
... a_{1n}+a_{n1} & a_{2n}+a_{n2} & \cdots & 2a_{nn}\cr}}\right],
\end{displaymath}](a_1100.gif)  | 
(9) | 
 
which is symmetric, and
![\begin{displaymath}
{\hbox{\sf A}}-{\hbox{\sf A}}^{\rm T}=\left[{\matrix{ 0 & a_...
... -(a_{1n}-a_{n1}) & -(a_{2n}-a_{n2}) & \cdots & 0\cr}}\right],
\end{displaymath}](a_1101.gif)  | 
(10) | 
 
which is antisymmetric.
See also Skew Symmetric Matrix, Symmetric Matrix
 
© 1996-9 Eric W. Weisstein 
1999-05-25