The best known example of an Anosov Diffeomorphism.  It is given by the Transformation
![\begin{displaymath}
\left[{\matrix{x_{n+1} \cr y_{n+1}\cr}}\right] = \left[{\mat...
...\cr 1 & 2 \cr}}\right]\left[{\matrix{x_n \cr y_n \cr}}\right],
\end{displaymath}](a_1706.gif)  | 
(1) | 
 
where 
 and 
 are computed mod 1.  The Arnold cat mapping is non-Hamiltonian, nonanalytic, and mixing. 
However, it is Area-Preserving since the Determinant is 1.  The Lyapunov
Characteristic Exponents are given by
  | 
(2) | 
 
so
  | 
(3) | 
 
The Eigenvectors are found by plugging 
 into the Matrix Equation
![\begin{displaymath}
\left[{\matrix{1-\sigma_\pm & 1 \cr 1 & 2-\sigma_\pm \cr}}\r...
...trix{x\cr y \cr}}\right] = \left[{\matrix{0\cr 0 \cr}}\right].
\end{displaymath}](a_1712.gif)  | 
(4) | 
 
For 
, the solution is
  | 
(5) | 
 
where 
 is the Golden Ratio, so the unstable (normalized) Eigenvector is
![\begin{displaymath}
\boldsymbol{\xi}_+ = {\textstyle{1\over 10}}\sqrt{50-10\sqrt{5}}\,\left[{\matrix{1 \cr {1\over 2}(1+\sqrt{5}\,)\cr}}\right].
\end{displaymath}](a_1715.gif)  | 
(6) | 
 
Similarly, for 
, the solution is
  | 
(7) | 
 
so the stable (normalized) Eigenvector is
![\begin{displaymath}
\boldsymbol{\xi}_- = {\textstyle{1\over 10}}\sqrt{50+10\sqrt{5}}\,\left[{\matrix{1 \cr {1\over 2}(1-\sqrt{5}\,)\cr}}\right].
\end{displaymath}](a_1718.gif)  | 
(8) | 
 
See also Anosov Map
 
© 1996-9 Eric W. Weisstein 
1999-05-25