| 
 | 
 | 
An asymptotic series is a Series Expansion of a Function in a variable 
 which may converge or diverge (Erdelyi
1987, p. 1), but whose partial sums can be made an arbitrarily good approximation to a given function for large enough 
.  To
form an asymptotic series 
 of
, written
| (1) | 
| (2) | 
| (3) | 
| (4) | 
| (5) | 
![]()  | 
(6) | 
References
 
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, p. 15, 1972.
 
Arfken, G.  ``Asymptotic of Semiconvergent Series.''  §5.10 in 
  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 339-346, 1985.
 
Bleistein, N. and Handelsman, R. A.  Asymptotic Expansions of Integrals.  New York: Dover, 1986.
 
Copson, E. T.  Asymptotic Expansions.  Cambridge, England: Cambridge University Press, 1965.
 
de Bruijn, N. G.  Asymptotic Methods in Analysis, 2nd ed.  New York: Dover, 1982.
 
Dingle, R. B.  Asymptotic Expansions: Their Derivation and Interpretation.  London: Academic Press, 1973.
 
Erdelyi, A.  Asymptotic Expansions.  New York: Dover, 1987.
 
Morse, P. M. and Feshbach, H.  ``Asymptotic Series; Method of Steepest Descent.''  §4.6 in
  Methods of Theoretical Physics, Part I.  New York: McGraw-Hill, pp. 434-443, 1953.
 
Olver, F. W. J.  Asymptotics and Special Functions.  New York: Academic Press, 1974.
 
Wasow, W. R.  Asymptotic Expansions for Ordinary Differential Equations.  New York: Dover, 1987.
 
 Asymptotic Series
| 
 | 
 | 
© 1996-9 Eric W. Weisstein