| 
 | 
 | 
A recursive Primality Certificate for a Prime 
.  The certificate consists of a list of
A Pratt Certificate is quicker to generate for small numbers. The Mathematica
 (Wolfram Research, Champaign,
IL) task ProvablePrime[n] therefore generates an Atkin-Goldwasser-Kilian-Morain certificate only for numbers above a
certain limit (
 by default), and a Pratt Certificate for smaller numbers.
See also Elliptic Curve Primality Proving, Elliptic Pseudoprime, Pratt Certificate, Primality Certificate, Witness
References
Atkin, A. O. L. and Morain, F.  ``Elliptic Curves and Primality Proving.''  Math. Comput. 61, 29-68,
  1993.
 
Bressoud, D. M. Factorization and Prime Testing.  New York: Springer-Verlag, 1989.
 
Goldwasser, S. and Kilian, J.  ``Almost All Primes Can Be Quickly Certified.''  Proc. 18th STOC.
  pp. 316-329, 1986.
 
Morain, F.  ``Implementation of the Atkin-Goldwasser-Kilian Primality Testing Algorithm.''  Rapport de Recherche 911,
  INRIA, Octobre 1988.
 
Schoof, R.  ``Elliptic Curves over Finite Fields and the Computation of Square Roots mod  
Wunderlich, M. C.  ``A Performance Analysis of a Simple Prime-Testing Algorithm.''  Math. Comput. 40,
  709-714, 1983.
 
.''  Math. Comput.
  44, 483-494, 1985.