| 
 | 
 | 
There are two definitions of Bernoulli polynomials in use.  The 
th Bernoulli polynomial is denoted here by 
,
and the archaic Bernoulli polynomial by 
.  These definitions correspond to the Bernoulli Numbers evaluated at 0, 
| (1) | |||
| (2) | 
| (3) | 
| (4) | 
![]()  | 
(5) | 
![]()  | 
(6) | 
| (7) | 
| (8) | 
![]()  | 
(9) | 
![]()  | 
(10) | 
A sum identity involving the Bernoulli Polynomials is
![]()  | 
(11) | 
See also Bernoulli Number, Euler-Maclaurin Integration Formulas, Euler Polynomial
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula.''
  §23.1 in Handbook of Mathematical Functions with Formulas, 
  Graphs, and Mathematical Tables, 9th printing.  New York: Dover, pp. 804-806, 1972.
 
Appell, P. E.  ``Sur une classe de polynomes.''  Annales d'École Normal Superieur, Ser. 2 9, 119-144,
  1882.
 
Arfken, G.  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, p. 330, 1985.
 
Bernoulli, J.  Ars conjectandi.  Basel, Switzerland, p. 97, 1713.  Published posthumously.
 
Euler, L.  ``Methodus generalis summandi progressiones.''  Comment. Acad. Sci. Petropol. 6, 68-97, 1738.
 
Lehmer, D. H.  ``A New Approach to Bernoulli Polynomials.''  Amer. Math. Monthly. 95, 905-911, 1988.
 
Lucas, E.  Ch. 14 in Théorie des Nombres.  Paris, 1891.
 
Raabe, J. L.  ``Zurückführung einiger Summen und bestimmten Integrale auf die Jakob Bernoullische Function.''
  J. reine angew. Math. 42, 348-376, 1851.
 
Spanier, J. and Oldham, K. B.  ``The Bernoulli Polynomial  
.''
  Ch. 19 in An Atlas of Functions.  Washington, DC: Hemisphere, pp. 167-173, 1987.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein