| 
 | 
 | 
Find a Square Number 
 such that, when a given number 
 is added or subtracted, new Square Numbers are obtained so that
| (1) | 
| (2) | 
| (3) | |||
| (4) | 
| 2 | 1 | 24 | 5 | 
| 3 | 1 | 96 | 10 | 
| 3 | 2 | 120 | 13 | 
| 4 | 1 | 240 | 17 | 
| 4 | 3 | 336 | 25 | 
See also Concordant Form, Congruent Numbers, Square Number
References
Alter, R. and Curtz, T. B.  ``A Note on Congruent Numbers.''  Math. Comput. 28, 303-305, 1974.
 
Alter, R.; Curtz, T. B.; and Kubota, K. K.  ``Remarks and Results on Congruent Numbers.''
  In Proc. Third Southeastern Conference on Combinatorics, Graph Theory, and Computing, 1972, Boca Raton, FL.
  Boca Raton, FL: Florida Atlantic University, pp. 27-35, 1972.
 
Bastien, L.  ``Nombres congruents.''  Interméd. des Math. 22, 231-232, 1915.
 
Gérardin, A.  ``Nombres congruents.''  Interméd. des Math. 22, 52-53, 1915.
 
Lagrange, J.  ``Construction d'une table de nombres congruents.''  Calculateurs en Math., Bull. Soc. math. France.,
  Mémoire 49-50, 125-130, 1977.
 
Ore, Ø.  Number Theory and Its History.  New York: Dover, 1988.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein