| 
 | 
 | 
The 2-1 fifth-order Diophantine equation
| (1) | 
| (2) | 
No solutions to the 3-1 equation
| (3) | 
Parametric solutions are known for the 3-3 (Guy 1994, pp. 140 and 142).  Swinnerton-Dyer (1952) gave two parametric solutions
to the 3-3 equation but, forty years later, W. Gosper discovered that the second scheme has an unfixable bug.  The smallest
primitive 3-3 solutions are
| (4) | |||
| (5) | |||
| (6) | |||
| (7) | |||
| (8) | 
For 4 fifth Powers, we have the 4-1 equation
| (9) | 
| (10) | |||
| (11) | |||
| (12) | |||
| (13) | |||
| (14) | |||
| (15) | |||
| (16) | |||
| (17) | |||
| (18) | |||
| (19) | 
A two-parameter solution to the 4-3 equation was given by Xeroudakes and Moessner (1958). Gloden (1949) also gave a
parametric solution. The smallest solution is
| (20) | 
| (21) | 
| (22) | 
Sastry (1934) found a 2-parameter solution for 5-1 equations
| 
 | 
|
| 
 | 
(23) | 
| (24) | |||
| (25) | |||
| (26) | |||
| (27) | |||
| (28) | |||
| (29) | |||
| (30) | |||
| (31) | |||
| (32) | |||
| (33) | |||
| (34) | |||
| (35) | 
The smallest primitive 5-2 solutions are
| (36) | |||
| (37) | |||
| (38) | |||
| (39) | |||
| (40) | |||
| (41) | 
The 6-1 equation has solutions
| (42) | |||
| (43) | |||
| (44) | |||
| (45) | |||
| (46) | |||
| (47) | |||
| (48) | |||
| (49) | 
The smallest 7-1 solution is
| (50) | 
References
Berndt, B. C.  Ramanujan's Notebooks, Part IV.   New York: Springer-Verlag, p. 95, 1994.
 
Gloden, A.  ``Über mehrgeradige Gleichungen.''  Arch. Math. 1, 482-483, 1949.
 
Guy, R. K.  ``Sums of Like Powers.  Euler's Conjecture.''  §D1 in
  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 139-144, 1994.
 
Lander, L. J. and Parkin, T. R.  ``A Counterexample to Euler's Sum of Powers Conjecture.''  Math. Comput.
  21, 101-103, 1967.
 
Lander, L. J.; Parkin, T. R.; and Selfridge, J. L.  ``A Survey of Equal Sums of Like Powers.''  Math. Comput.
  21, 446-459, 1967.
 
Martin, A.  ``Methods of Finding  
Martin, A.  Smithsonian Misc. Coll. 33, 1888.
 
Martin, A.  ``About Fifth-Power Numbers whose Sum is a Fifth Power.''  Math. Mag. 2, 201-208, 1896.
 
Moessner, A.  ``Einige numerische Identitäten.''  Proc. Indian Acad. Sci. Sect. A 10, 296-306, 1939.
 
Moessner, A.  ``Alcune richerche di teoria dei numeri e problemi diofantei.''  Bol. Soc. Mat. Mexicana
  2, 36-39, 1948.
 
Rao, K. S.  ``On Sums of Fifth Powers.''  J. London Math. Soc. 9, 170-171, 1934.
 
Sastry, S.  ``On Sums of Powers.''  J. London Math. Soc. 9, 242-246, 1934.
 
Swinnerton-Dyer, H. P. F.  ``A Solution of 
 
Xeroudakes, G. and Moessner, A.  ``On Equal Sums of Like Powers.''  Proc. Indian Acad. Sci. Sect. A 48, 245-255, 1958.
 
th-Power Numbers Whose Sum is an 
th Power; With Examples.''
  Bull. Philos. Soc. Washington 10, 107-110, 1887.
.''  Proc. Cambridge Phil. Soc. 48, 516-518, 1952.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein