| 
 | 
 | 
Call an equation involving quartics 
-
 if a sum of 
 quartics is equal to a sum of 
 fourth Powers.  The 2-1 equation
| (1) | 
| (2) | 
Parametric solutions to the 2-2 equation
| (3) | 
| (4) | |||
| (5) | |||
| (6) | |||
| (7) | |||
| (8) | |||
| (9) | |||
| (10) | |||
| (11) | |||
| (12) | 
| (13) | |||
| (14) | |||
| (15) | |||
| (16) | 
| (17) | |||
| (18) | |||
| (19) | |||
| (20) | 
In 1772, Euler 
 proposed that the 3-1 equation
| (21) | 
| (22) | 
| (23) | 
| (24) | 
In contrast, there are many solutions to the 3-1 equation
| (25) | 
Parametric solutions to the 3-2 equation
| (26) | 
| (27) | 
Ramanujan 
 gave the 3-3 equations
| (28) | |||
| (29) | |||
| (30) | 
Ramanujan 
 also gave the general expression
| (31) | 
The 4-1 equation
| (32) | 
| (33) | |||
| (34) | |||
| (35) | |||
| (36) | |||
| (37) | |||
| (38) | |||
| (39) | |||
| (40) | |||
| (41) | |||
| (42) | |||
| (43) | |||
| (44) | |||
| (45) | |||
| (46) | |||
| (47) | |||
| (48) | |||
| (49) | |||
| (50) | |||
| (51) | |||
| (52) | |||
| (53) | |||
| (54) | |||
| (55) | 
Ramanujan 
 gave the 4-2 equation
| (56) | 
| (57) | |||
| (58) | |||
| (59) | 
There are an infinite number of solutions to the 5-1 equation
| (60) | 
| (61) | |||
| (62) | |||
| (63) | |||
| (64) | |||
| (65) | |||
| (66) | |||
| (67) | |||
| (68) | 
| 
 | 
|
| 
 | 
|
| 
 | 
(69) | 
| 
 | 
|
| 
 | 
|
| 
 
  | 
(70) | 
Ramanujan 
 gave
| (71) | 
| (72) | 
| (73) | 
| 
 | 
|
| 
 | 
(74) | 
| (75) | 
| 
 | 
|
| 
 | 
(76) | 
| (77) | 
V. Kyrtatas noticed that 
, 
, 
, 
, 
, and 
 satisfy
| (78) | 
The first few numbers 
 which are a sum of two or more fourth Powers (
 equations) are 353, 651, 2487,
2501, 2829, ... (Sloane's A003294). The only number of the form
| (79) | 
See also Bhargava's Theorem, Ford's Theorem
References
Barbette, E.  Les sommes de  
Beiler, A. H.  Recreations in the Theory of Numbers: The Queen of Mathematics Entertains.  New York: Dover, 1966.
 
Berndt, B. C.  Ramanujan's Notebooks, Part IV.   New York: Springer-Verlag, 1994.
 
Berndt, B. C. and Bhargava, S. ``Ramanujan--For Lowbrows.''  Am. Math. Monthly 100, 645-656, 1993.
 
Bhargava, S.  ``On a Family of Ramanujan's Formulas for Sums of Fourth Powers.''  Ganita 43, 63-67, 1992.
 
Brudno, S.  ``A Further Example of 
 
Dickson, L. E.  History of the Theory of Numbers, Vol. 2: Diophantine Analysis.  New York: Chelsea, 1966.
 
Euler, L.  Nova Acta Acad. Petrop. as annos 1795-1796 13, 45, 1802.
 
Fauquembergue, E.  L'intermédiaire des Math. 5, 33, 1898.
 
Ferrari, F.  L'intermédiaire des Math. 20, 105-106, 1913.
 
Guy, R. K.  ``Sums of Like Powers.  Euler's Conjecture'' and ``Some Quartic Equations.''  §D1 and D23 in
  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 139-144 and 192-193, 1994.
 
Haldeman, C. B.  ``On Biquadrate Numbers.''  Math. Mag. 2, 285-296, 1904.
 
Hardy, G. H. and Wright, E. M.  §13.7 in An Introduction to the Theory of Numbers, 5th ed.
  Oxford, England: Clarendon Press, 1979.
 
Hirschhorn, M. D.  ``Two or Three Identities of Ramanujan.''  Amer. Math. Monthly 105, 52-55, 1998.
 
Lander, L. J.; Parkin, T. R.; and Selfridge, J. L.  ``A Survey of Equal Sums of Like Powers.''  Math. Comput. 21, 446-459, 1967.
 
Le Lionnais, F.  Les nombres remarquables.  Paris: Hermann, p. 56, 1983.
 
Leech, J.  ``Some Solutions of Diophantine Equations.''  Proc. Cambridge Phil. Soc. 53, 778-780, 1957.
 
Leech, J.  ``On 
 
Martin, A.  ``About Biquadrate Numbers whose Sum is a Biquadrate.''  Math. Mag. 2, 173-184, 1896.
 
Martin, A.  ``About Biquadrate Numbers whose Sum is a Biquadrate--II.''  Math. Mag. 2, 325-352, 1904.
 
Norrie, R.  University of St. Andrews 500th Anniversary Memorial Volume.  Edinburgh, Scotland: pp. 87-89, 1911.
 
Patterson, J. O.  ``A Note on the Diophantine Problem of Finding Four Biquadrates whose Sum is a Biquadrate.''
  Bull. Amer. Math. Soc. 48, 736-737, 1942.
 
Ramanujan, S.  Notebooks.  New York: Springer-Verlag, pp. 385-386, 1987.
 
Richmond, H. W.  ``On Integers Which Satisfy the Equation 
 
Sloane, N. J. A.
A003824,
A018786, and
A003294/M5446
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
 
Ward, M.  ``Euler's Problem on Sums of Three Fourth Powers.''  Duke Math. J. 15, 827-837, 1948.
 
-iémes puissances distinctes égales à une p-iéme puissance.
  Doctoral Dissertation, Liege, Belgium.  Paris: Gauthier-Villars, 1910.
.''  Proc. Cambridge Phil. Soc. 60, 1027-1028, 1964.
.''  Proc. Cambridge Phil. Soc. 54, 554-555, 1958.
.''  Trans. Cambridge Phil. Soc. 22,
  389-403, 1920.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein