| 
 | 
 | 
Let a Module 
 in an Integral Domain 
 for 
 be expressed using a two-element basis as
For Imaginary Quadratic Fields 
 (with 
), the 
discriminants are given in the following table.
| 
 | 
|||||
| 
 | 
|||||
| 
 | 
|||||
| 
 | 
 | 
||||
| 
 | 
|||||
| 
 | 
|||||
| 
 | 
 | 
||||
| 
 | 
|||||
| 
 | 
 | 
||||
| 
 | 
The discriminants of Real Quadratic Fields 
 (
) are
given in the following table.
| 2 | 34 | 67 | |||
| 3 | 35 | 
 | 
69 | ||
| 5 | 5 | 37 | 37 | 70 | 
 | 
| 6 | 38 | 71 | |||
| 7 | 39 | 
 | 
73 | 73 | |
| 10 | 41 | 41 | 74 | ||
| 11 | 42 | 
 | 
77 | ||
| 13 | 13 | 43 | 78 | 
 | 
|
| 14 | 46 | 79 | |||
| 15 | 
 | 
47 | 82 | ||
| 17 | 17 | 51 | 
 | 
83 | |
| 19 | 53 | 53 | 85 | ||
| 21 | 55 | 
 | 
86 | ||
| 22 | 57 | 87 | 
 | 
||
| 23 | 58 | 89 | 89 | ||
| 26 | 59 | 91 | 
 | 
||
| 29 | 29 | 61 | 61 | 93 | |
| 30 | 
 | 
62 | 94 | ||
| 31 | 65 | 95 | 
 | 
||
| 33 | 66 | 
 | 
97 | 97 | 
See also Different, Fundamental Discriminant, Module
References
Cohn, H.  Advanced Number Theory.  New York: Dover, pp. 72-73 and 261-274, 1980.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein