| 
 | 
 | 
The unique Group of Order 7.  It is Abelian and
Cyclic. Examples include the Point Group 
 and the integers modulo 7
under addition.  The elements 
 of the group satisfy 
, where 1 is the Identity Element.
The Cycle Graph is shown above.
| 1 | |||||||
| 1 | 1 | ||||||
| 1 | |||||||
| 1 | |||||||
| 1 | |||||||
| 1 | |||||||
| 1 | |||||||
| 1 | 
The Conjugacy Classes are 
, 
, 
, 
, 
, 
, and 
.