| 
 | 
 | 
For a given 
, determine a complete list of fundamental Discriminants
 such that the Class Number is given by 
.  Heegner (1952) gave a solution for 
, but it was not
completely accepted due to a number of apparent gaps.  However, subsequent examination of Heegner's proof showed it to be
``essentially'' correct (Conway and Guy 1996).  Conway and Guy (1996) therefore call the nine values of 
 having
 where 
 is the Discriminant corresponding to a Quadratic Field
 (
, 
, 
, 
, 
, 
, 
, 
, and 
; Sloane's A003173) the Heegner Numbers.  The Heegner Numbers have a number of fascinating properties.
Stark (1967) and Baker (1966) gave independent proofs of the fact that only nine such numbers exist; both
proofs were accepted.  Baker (1971) and Stark (1975) subsequently and independently solved the generalized class number
problem completely for 
.  Oesterlé (1985) solved the case 
, and Arno (1992) solved the case 
. Wagner (1996)
solve the cases 
, 6, and 7.  Arno et al. (1993) solved the problem for Odd 
 satisfying 
.
See also Class Number, Gauss's Class Number Conjecture, Heegner Number
References
Arno, S.  ``The Imaginary Quadratic Fields of Class Number 4.''  Acta Arith. 40, 321-334, 1992.
 
Arno, S.; Robinson, M. L.; and Wheeler, F. S.  ``Imaginary Quadratic Fields with Small Odd Class Number.''  Dec. 1993.
  http://www.math.uiuc.edu/Algebraic-Number-Theory/0009/.
 
Baker, A.  ``Linear Forms in the Logarithms of Algebraic Numbers.  I.''  Mathematika 13, 204-216, 1966.
 
Baker, A.  ``Imaginary Quadratic Fields with Class Number 2.''  Ann. Math. 94, 139-152, 1971.
 
Conway, J. H. and Guy, R. K.  ``The Nine Magic Discriminants.''  In The Book of Numbers.  New York: Springer-Verlag,
  pp. 224-226, 1996.
 
Goldfeld, D. M.  ``Gauss' Class Number Problem for Imaginary Quadratic Fields.''  Bull. Amer. Math. Soc. 13, 23-37, 1985.
 
Heegner, K.  ``Diophantische Analysis und Modulfunktionen.''  Math. Z. 56, 227-253, 1952.
 
Heilbronn, H. A. and Linfoot, E. H.  ``On the Imaginary Quadratic Corpora of Class-Number One.''
  Quart. J. Math. (Oxford) 5, 293-301, 1934.
 
Lehmer, D. H.  ``On Imaginary Quadratic Fields whose Class Number is Unity.''  Bull. Amer. Math. Soc. 39, 360, 1933.
 
Montgomery, H. and Weinberger, P.  ``Notes on Small Class Numbers.''  Acta. Arith. 24, 529-542, 1974.
 
Oesterlé, J.  ``Nombres de classes des corps quadratiques imaginaires.''  Astérique 121-122, 309-323, 1985.
 
Oesterlé, J.  ``Le problème de Gauss sur le nombre de classes.''  Enseign Math. 34, 43-67, 1988.
 
Serre, J.-P.  
 
Shanks, D.  ``On Gauss's Class Number Problems.''  Math. Comput. 23, 151-163, 1969.
 
Sloane, N. J. A.  Sequence
A003173/M0827
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Stark, H. M.  ``A Complete Determination of the Complex Quadratic Fields of Class Number One.''  Michigan Math. J. 14, 1-27, 1967.
 
Stark, H. M.  ``On Complex Quadratic Fields with Class Number Two.''  Math. Comput. 29, 289-302, 1975.
 
Wagner, C.  ``Class Number 5, 6, and 7.''  Math. Comput. 65, 785-800, 1996.
 
.''  Math. Medley 13, 1-10, 1985.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein