A method for solving Matrix Equations of the form
  | 
(1) | 
 
Starting with the system of equations
![\begin{displaymath}
\left[{\matrix{
a_{11} & a_{12} & \cdots & a_{1k}\cr
a_{21...
...ht]
= \left[{\matrix{b_1\cr b_2\cr \vdots\cr b_k\cr}}\right],
\end{displaymath}](g_866.gif)  | 
(2) | 
 
compose the augmented Matrix ``equation''
![\begin{displaymath}
\left[\matrix{
a_{11} & a_{12} & \cdots & a_{1k}\cr
a_{21}...
...right]
\left[{\matrix{x_1\cr x_2\cr \vdots\cr x_k\cr}}\right].
\end{displaymath}](g_867.gif)  | 
(3) | 
 
Then, perform Matrix operations to put the augmented Matrix into the form
![\begin{displaymath}
\left[\matrix{
a_{11}' & a_{12}' & \cdots & a_{1k}'\cr
0 &...
...right]
\left[{\matrix{x_1\cr x_2\cr \vdots\cr x_k\cr}}\right].
\end{displaymath}](g_868.gif)  | 
(4) | 
 
Solve the equation of the 
th row for 
, then substitute back into the equation of the 
st row obtain a solution
for 
, etc., according to the formula
  | 
(5) | 
 
See also Gauss-Jordan Elimination, LU Decomposition, Matrix Equation, Square Root Method
 
© 1996-9 Eric W. Weisstein 
1999-05-25