| 
 | 
 | 
Consider the Recurrence Relation
| (1) | 
| (2) | 
| (3) | 
| (4) | 
| (5) | 
For example, we have the sequences 
:
| (6) | 
| (7) | 
| (8) | 
| (9) | 
A sequence even more striking for remaining integral over many terms is the 3-Göbel sequence
| (10) | 
The Göbel sequences can be generalized to 
 powers by
| (11) | 
See also Somos Sequence
References
Guy, R. K. ``The Strong Law of Small Numbers.''  Amer. Math. Monthly 95, 697-712, 1988.
 
Guy, R. K.  ``A Recursion of Göbel.''  §E15 in 
  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 214-215, 1994.
 
Sloane, N. J. A.  Sequences
A003504/M0728
and A005166/M1551
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Zaiger, D.  ``Solution: Day 5, Problem 3.''
  http://www-groups.dcs.st-and.ac.uk/~john/Zagier/Solution5.3.html.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein