| 
 | 
 | 
A graphical partition of order 
 is the Degree Sequence of a Graph
with 
 Edges and no isolated Vertices.  For 
, 4, 6, ..., the number of graphical partitions is
1, 2, 5, 9, 17, ... (Sloane's A000569).
References
Barnes, T. M. and Savage, C. D.  ``A Recurrence for Counting Graphical Partitions.''  Electronic J. Combinatorics 2, R11 1-10, 1995.
http://www.combinatorics.org/Volume_2/volume2.html#R11.
 
Barnes, T. M. and Savage, C. D.  ``Efficient Generation of Graphical Partitions.''  Disc. Appl. Math. 78, 17-26, 1997.
 
Ruskey, F.  ``Information on Graphical Partitions.''  
http://sue.csc.uvic.ca/~cos/inf/nump/GraphicalPartition.html.
 
Sloane, N. J. A.  Sequence 
A000569
in ``The On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.