| 
 | 
 | 
Let 
 be a Subset of a Metric Space 
.  Then the Hausdorff dimension 
 of 
 is the Infimum of
 such that the 
-dimensional Hausdorff Measure of 
 is 0.  Note that this need not be an
Integer.  
In many cases, the Hausdorff dimension correctly describes the correction term for a resonator with Fractal
Perimeter in Lorentz's conjecture. 
  However, in general, the proper
dimension to use turns out to be the Minkowski-Bouligand Dimension (Schroeder 1991).
See also Capacity Dimension, Fractal Dimension, Minkowski-Bouligand Dimension
References
Federer, H.  Geometric Measure Theory.  New York: Springer-Verlag, 1969.
 
Hausdorff, F.  ``Dimension und äußeres Maß.''  Math. Ann. 79, 157-179, 1919.
 
Ott, E.  ``Appendix: Hausdorff Dimension.''  Chaos in Dynamical Systems.  New York: Cambridge University 
  Press, pp. 100-103, 1993.
 
Schroeder, M.  Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise.
  New York: W. H. Freeman, pp. 41-45, 1991.