Let 
 be an 
th degree Polynomial with zeros at 
, ..., 
.  Then the fundamental
Polynomials are
![\begin{displaymath}
h^{(1)}_\nu(x)=\left[{1-{l''(x_\nu)\over l'(x_\nu)}}\right][l_\nu(x)]^2
\end{displaymath}](h_1377.gif)  | 
(1) | 
 
and
![\begin{displaymath}
h^{(2)}_\nu(x)=(x-x_\nu)[l_\nu(x)]^2
\end{displaymath}](h_1378.gif)  | 
(2) | 
 
for 
, 2, ...
.  These polynomials have the properties
for 
, 2, ..., 
.  Now let 
, ..., 
 and 
, ..., 
 be values.  Then the expansion
  | 
(7) | 
 
gives the unique Hermite interpolating fundamental polynomial for which
If 
, these are called Step Polynomials.  The fundamental polynomials satisfy
  | 
(10) | 
 
and
  | 
(11) | 
 
Also, if 
 is an arbitrary distribution on the interval 
, then
  | 
  | 
  | 
(12) | 
  | 
  | 
  | 
(13) | 
  | 
  | 
  | 
(14) | 
  | 
  | 
  | 
(15) | 
  | 
  | 
  | 
(16) | 
  | 
  | 
  | 
(17) | 
 
where 
 are Christoffel Numbers.
References
Hildebrand, F. B.  Introduction to Numerical Analysis.  New York: McGraw-Hill, pp. 314-319, 1956.
Szegö, G.  Orthogonal Polynomials, 4th ed.  Providence, RI: Amer. Math. Soc., pp. 330-332, 1975.
© 1996-9 Eric W. Weisstein 
1999-05-25