| 
 | 
 | 
A Figurate Number and 6-Polygonal Number of the form 
.  The first few are 1, 6, 15, 28, 45, 
... (Sloane's A000384).  The Generating Function of the hexagonal numbers
Every hexagonal number is a Triangular Number since
See also Figurate Number, Hex Number, Triangular Number
References
Duke, W. and Schulze-Pillot, R.  ``Representations of Integers by Positive Ternary Quadratic Forms and Equidistribution
  of Lattice Points on Ellipsoids.''  Invent. Math. 99, 49-57, 1990.
 
Guy, R. K.  ``Sums of Squares.''  §C20 in 
  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 136-138, 1994.
 
Legendre, A.-M.  Théorie des nombres, 4th ed., 2 vols.  Paris: A. Blanchard, 1979.
 
Sloane, N. J. A.  Sequence
A000384/M4108
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.