| 
 | 
 | 
The Integer Sequence defined by the Recurrence Relation
 takes a value of 1/2 for 
 of the form 
 with 
, 2, ....  Pickover (1996) gives a table of
analogous values of 
 corresponding to different values of 
. 
See also Blancmange Function, Hofstadter's Q-Sequence, Mallow's Sequence
References
Conolly, B. W. ``Meta-Fibonacci Sequences.''  In Fibonacci and Lucas Numbers, and the Golden Section
  (Ed. S. Vajda).  New York: Halstead Press, pp. 127-138, 1989.
 
Conway, J.  ``Some Crazy Sequences.''  Lecture at AT&T Bell Labs, July 15, 1988.
 
Guy, R. K.  ``Three Sequences of Hofstadter.''  §E31 in 
  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 231-232, 1994.
 
Kubo, T. and Vakil, R.  ``On Conway's Recursive Sequence.''  Disc. Math. 152, 225-252, 1996.
 
Mallows, C. ``Conway's Challenging Sequence.''  Amer. Math. Monthly 98, 5-20, 1991.
 
Pickover, C. A.  ``The Drums of Ulupu.''  In Mazes for the Mind: Computers and the Unexpected.  New York:
  St. Martin's Press, 1993.
 
Pickover, C. A.  ``The Crying of Fractal Batrachion 1,489.''  Ch. 25 in Keys to Infinity.  New York:
  W. H. Freeman, pp. 183-191, 1995.
 
Schroeder, M.  ``John Horton Conway's `Death Bet.'''  Fractals, Chaos, Power Laws.
  New York: W. H. Freeman, pp. 57-59, 1991.
 
Sloane, N. J. A.  Sequence
A004001/M0276
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein