Kummer's first formula is
  | 
(1) | 
 
where 
 is the Hypergeometric Function with 
, 
, 
, ..., and 
 is the
Gamma Function.  The identity can be written in the more symmetrical form as
  | 
(2) | 
 
where 
 and 
 is a positive integer.  If 
 is a negative integer, the identity takes the form
  | 
(3) | 
 
(Petkovsek et al. 1996).
Kummer's second formula is
![\begin{displaymath}
{}_1F_1({\textstyle{1\over 2}}+m;2m+1;z) = M_{0,m}(z) = z^{m...
...^\infty {z^{2p}\over 2^{4p} p!(m+1)(m+2)\cdots (m+p)}}\right],
\end{displaymath}](k_896.gif)  | 
(4) | 
 
where 
 is the Confluent Hypergeometric Function and 
, 
, 
, ....
References
Petkovsek, M.;  Wilf, H. S.; and Zeilberger, D.  A=B.  Wellesley, MA: A. K. Peters, pp. 42-43 and 126, 1996.
 
© 1996-9 Eric W. Weisstein 
1999-05-26