| 
 | 
 | 
Solutions to the Laguerre Differential Equation with 
 are called Laguerre polynomials.  The Laguerre
polynomials 
 are illustrated above for 
 and 
, 2, ..., 5.
The Rodrigues formula for the Laguerre polynomials is
| (1) | 
![]()  | 
|||
| (2) | 
| (3) | 
| (4) | 
| (5) | 

Solutions to the associated Laguerre Differential Equation with 
 are called associated Laguerre
polynomials 
. In terms of the normal Laguerre polynomials,
| (6) | 
![]()  | 
|||
![]()  | 
(7) | ||
![]()  | 
(8) | 
![]()  | 
(9) | 
| (10) | 
| (11) | 
Recurrence Relations include
![]()  | 
(12) | 
| (13) | 
![]()  | 
|||
| (14) | 
In terms of the Confluent Hypergeometric Function,
| (15) | 
![]()  | 
(16) | 
| (17) | 
![]()  | 
(18) | 
![]()  | 
(19) | 
The first few associated Laguerre polynomials are
![\begin{eqnarray*}
L_0^k(x) &=& 1\\
L_1^k(x) &=& -x+k+1\\
L_2^k(x) &=& {\tex...
...xtstyle{1\over 6}}[-x^3+3(k+3)x^2-3(k+2)(k+3)x+(k+1)(k+2)(k+3)].
\end{eqnarray*}](l1_281.gif)
See also Sonine Polynomial
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Orthogonal Polynomials.''  Ch. 22 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 771-802, 1972.
 
Arfken, G.  ``Laguerre Functions.''  §13.2 in Mathematical Methods for Physicists, 3rd ed.
  Orlando, FL: Academic Press, pp. 721-731, 1985.
 
Chebyshev, P. L.  ``Sur le développement des fonctions à une seule variable.''  Bull. Ph.-Math.,
  Acad. Imp. Sc. St. Pétersbourg 1, 193-200, 1859.
 
Chebyshev, P. L.  Oeuvres, Vol. 1.  New York: Chelsea, pp. 499-508, 1987.
 
Iyanaga, S. and Kawada, Y. (Eds.).  ``Laguerre Functions.''  Appendix A, Table 20.VI in
  Encyclopedic Dictionary of Mathematics.  Cambridge, MA: MIT Press, p. 1481, 1980.
 
Laguerre, E. de.  ``Sur l'intégrale 
 
Petkovsek, M.;  Wilf, H. S.; and Zeilberger, D.  A=B.  Wellesley, MA: A. K. Peters, pp. 61-62, 1996.
 
Sansone, G.	 ``Expansions in Laguerre and Hermite Series.''  Ch. 4 in Orthogonal Functions, rev. English ed.
  New York: Dover, pp. 295-385, 1991.
 
Spanier, J. and Oldham, K. B.  ``The Laguerre Polynomials  
Szegö, G.  Orthogonal Polynomials, 4th ed.  Providence, RI: Amer. Math. Soc., 1975.
 
.''  Bull. Soc. math. France 7, 72-81, 1879.
  Reprinted in Oeuvres, Vol. 1.  New York: Chelsea, pp. 428-437, 1971.
.''
  Ch. 23 in An Atlas of Functions.  Washington, DC: Hemisphere, pp. 209-216, 1987.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein