N.B. A detailed on-line essay by S. Finch
was the starting point for this entry.
Assume a function 
 is integrable over the interval 
 and 
 is the 
th partial sum of the
Fourier Series of 
, so that
and
![\begin{displaymath}
S_n(f,x)={\textstyle{1\over 2}}a_0+\left\{{\sum_{k=1}^n [a_k\cos(kx)+b_k\sin(kx)]}\right\}.
\end{displaymath}](l1_1158.gif)  | 
(3) | 
 
If
  | 
(4) | 
 
for all 
, then
![\begin{displaymath}
S_n(f,x)\leq {1\over\pi}\int_0^\pi {\vert\sin[{\textstyle{1\...
...ta]\vert\over\sin({\textstyle{1\over 2}}\theta)}\,d\theta=L_n,
\end{displaymath}](l1_1160.gif)  | 
(5) | 
 
and 
 is the smallest possible constant for which this holds for all continuous 
. The first few values of 
are
Some Formulas for 
 include
(Zygmund 1959) and integral Formulas include
(Hardy 1942).  For large 
,
  | 
(12) | 
 
This result can be generalized for an 
-differentiable function satisfying
  | 
(13) | 
 
for all 
.  In this case,
  | 
(14) | 
 
where
  | 
(15) | 
 
(Kolmogorov 1935, Zygmund 1959).
Watson (1930) showed that
![\begin{displaymath}
\lim_{n\to\infty} \left[{L_n-{4\over\pi^2}\ln(2n+1)}\right]=c,
\end{displaymath}](l1_1175.gif)  | 
(16) | 
 
where
where 
 is the Gamma Function, 
 is the Dirichlet Lambda Function, and 
 is the 
Euler-Mascheroni Constant.
References
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/lbsg/lbsg.html
Hardy, G. H.  ``Note on Lebesgue's Constants in the Theory of Fourier Series.'' J. London Math. Soc. 17, 4-13, 1942.
Kolmogorov, A. N.  ``Zur Grössenordnung des Restgliedes Fourierscher reihen differenzierbarer Funktionen.''  
  Ann. Math. 36, 521-526, 1935.
Watson, G. N.  ``The Constants of Landau and Lebesgue.''  Quart. J. Math. Oxford 1, 310-318, 1930.
Zygmund, A. G.  Trigonometric Series, 2nd ed., Vols. 1-2.  Cambridge, England: Cambridge University Press, 1959.
© 1996-9 Eric W. Weisstein 
1999-05-26