The second-order Ordinary Differential Equation
  | 
(1) | 
 
which can be rewritten
![\begin{displaymath}
{d\over dx} \left[{(1-x^2) {dy\over dx}}\right]+ l(l+1) y = 0.
\end{displaymath}](l1_1221.gif)  | 
(2) | 
 
The above form is a special case of the associated Legendre differential equation with 
. The Legendre differential
equation has Regular Singular Points at 
, 1, and 
.  It can be solved using a
series expansion,
Plugging in,
  | 
(6) | 
 
 
 | 
 | 
 
 | 
(7) | 
 
 | 
 | 
 
 | 
(8) | 
 
 | 
 | 
 
 | 
(9) | 
![\begin{displaymath}
\sum_{n=0}^\infty \{(n+1)(n+2)a_{n+2}+[-n(n-1)-2n+l(l+1)]a_n\} = 0,
\end{displaymath}](l1_1235.gif)  | 
(10) | 
 
so each term must vanish and
![\begin{displaymath}
(n+1)(n+2)a_{n+2}-n(n+1)+l(l+1)]a_n = 0
\end{displaymath}](l1_1236.gif)  | 
(11) | 
 
Therefore,
so the Even solution is
![\begin{displaymath}
y_1(x) = 1+\sum_{n=1}^\infty (-1)^n {[(l-2n+2)\cdots(l-2)l][(l+1)(l+3)\cdots (l+2n-1)] \over (2n)!} x^{2n}.
\end{displaymath}](l1_1248.gif)  | 
(16) | 
 
Similarly, the Odd solution is
![\begin{displaymath}
y_2(x)= x+\sum_{n=1}^\infty(-1)^n{[(l-2n+1)\cdots(l-3)(l-1)][(l+2)(l+4)\cdots(l+2n)\over (2n+1)!}x^{2m+1}.
\end{displaymath}](l1_1249.gif)  | 
(17) | 
 
If 
 is an Even Integer, the series 
 reduces to a Polynomial of degree 
 with only Even
Powers of 
 and the series 
 diverges.  If 
 is an Odd Integer, the series 
 reduces
to a Polynomial of degree 
 with only Odd Powers of 
 and the series 
 diverges.  The
general solution for an Integer 
 is given by the Legendre Polynomials
  | 
(18) | 
 
where 
 is chosen so that 
.  If the variable 
 is replaced by 
, then the Legendre
differential equation becomes
  | 
(19) | 
 
as is derived for the associated Legendre differential equation with 
.
The associated Legendre differential equation is
![\begin{displaymath}
{d\over dx} \left[{(1-x^2) {dy\over dx}}\right]+ \left[{l(l+1) - {m^2\over 1-x^2}}\right]y = 0
\end{displaymath}](l1_1258.gif)  | 
(20) | 
 
![\begin{displaymath}
(1-x^2) {d^2y\over dx^2} - 2x {dy\over dx}+\left[{l(l+1) - {m^2\over 1-x^2}}\right]y = 0.
\end{displaymath}](l1_1259.gif)  | 
(21) | 
 
The solutions to this equation are called the associated Legendre polynomials.  Writing 
, first establish
the identities
  | 
(22) | 
 
  | 
(23) | 
 
and
  | 
(25) | 
 
Therefore,
Plugging (22) into (26) and the result back into (21) gives
![\begin{displaymath}
\left({{d^2y\over d\theta^2}-{\cos\theta\over\sin\theta} {dy...
...r d\theta}+\left[{l(l+1) - {m^2\over\sin^2\theta}}\right]y = 0
\end{displaymath}](l1_1270.gif)  | 
(27) | 
 
![\begin{displaymath}
{d^2y\over d\theta^2} + {\cos\theta\over\sin\theta} {dy\over dx} + \left[{l(l+1) - {m^2\over\sin^2\theta}}\right]y = 0.
\end{displaymath}](l1_1271.gif)  | 
(28) | 
 
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, p. 332, 1972.
© 1996-9 Eric W. Weisstein 
1999-05-26