| 
 | 
 | 
Also called ``the'' Gaussian Quadrature or Legendre Quadrature.  A Gaussian Quadrature over the
interval 
 with Weighting Function 
.  The Abscissas for quadrature order 
 are
given by the roots of the Legendre Polynomials 
, which occur symmetrically about 0.
The weights are
| (1) | 
| (2) | 
![]()  | 
|||
![]()  | 
(3) | 
| (4) | 
| (5) | 
| (6) | 
| (7) | 
| (8) | 
| 2 | ± 0.57735 | 1.000000 | 
| 3 | 0 | 0.888889 | 
| ± 0.774597 | 0.555556 | |
| 4 | ± 0.339981 | 0.652145 | 
| ± 0.861136 | 0.347855 | |
| 5 | 0 | 0.568889 | 
| ± 0.538469 | 0.478629 | |
| ± 0.90618 | 0.236927 | 
The Abscissas and weights can be computed analytically for small 
.
| 2 | 
 | 
1 | 
| 3 | 0 | 
 | 
| 
 | 
 | 
|
| 4 | 
 | 
 | 
| 
 | 
 | 
References
Beyer, W. H.  CRC Standard Mathematical Tables, 28th ed.  Boca Raton, FL: CRC Press, pp. 462-463, 1987.
 
Chandrasekhar, S.  Radiative Transfer.  New York: Dover, pp. 56-62, 1960.
 
Hildebrand, F. B.  Introduction to Numerical Analysis.  New York: McGraw-Hill, pp. 323-325, 1956.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein