| 
 | 
 | 
The limaçon is a polar curve of the form 
If 
, we have a convex limaçon. If 
, we have a dimpled limaçon.  If 
, the limaçon
degenerates to a Cardioid.  If 
, we have limaçon with an inner loop.  If 
, it is a 
Trisectrix (but not the Maclaurin Trisectrix) with inner loop of Area
See also Cardioid
References
Lawrence, J. D.  A Catalog of Special Plane Curves.  New York: Dover, pp. 113-117, 1972.
 
Lee, X.  ``Limacon of Pascal.''
http://www.best.com/~xah/SpecialPlaneCurves_dir/LimaconOfPascal_dir/limaconOfPascal.html
 
Lee, X.  ``Limacon Graphics Gallery.''
http://www.best.com/~xah/SpecialPlaneCurves_dir/LimaconGGallery_dir/limaconGGallery.html
 
Lockwood, E. H.  ``The Limaçon.''  Ch. 5 in A Book of Curves.  Cambridge, England: Cambridge University Press,
  pp. 44-51, 1967.
 
MacTutor History of Mathematics Archive.  ``Limacon of Pascal.''
http://www-groups.dcs.st-and.ac.uk/~history/Curves/Limacon.html.
 
Yates, R. C.  ``Limacon of Pascal.''  A Handbook on Curves and Their Properties.  Ann Arbor, MI: J. W. Edwards, pp. 148-151, 1952.