| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Let 
 be a Real Number, and let 
 be the Set of Positive Real Numbers
for which
| (1) | 
| (2) | 
![]()  | 
(3) | 
| (4) | |||
| (5) | |||
| (6) | |||
| (7) | |||
| (8) | |||
| (9) | 
See also Liouville's Rational Approximation Theorem, Roth's Theorem, Thue-Siegel-Roth Theorem
References
Borwein, J. M. and Borwein, P. B.
  Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity.  New York: Wiley, 1987.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/lvlrth/lvlrth.html
 
Hardy, G. H. and Wright, E. M.   An Introduction to the Theory of Numbers, 5th ed.
  Oxford: Clarendon Press, 1979.
 
Hata, M.  ``Improvement in the Irrationality Measures of  
Hata, M.  ``Rational Approximations to  
Hata, M.  ``A Note on Beuker's Integral.''  J. Austral. Math. Soc. 58, 143-153, 1995.
 
Stark, H. M.  An Introduction to Number Theory.  Cambridge, MA: MIT Press, 1978.
 
 and 
.''
  Proc. Japan. Acad. Ser. A Math. Sci. 68, 283-286, 1992.
 and Some Other Numbers.''  Acta Arith. 63 335-349, 1993.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein