Given a Lyapunov Characteristic Exponent 
, the corresponding Lyapunov characteristic number 
is defined as
  | 
(1) | 
 
For an 
-dimensional linear Map,
  | 
(2) | 
 
The Lyapunov characteristic numbers 
, ..., 
 are the Eigenvalues of the Map
Matrix.  For an arbitrary Map
  | 
(3) | 
 
  | 
(4) | 
 
the Lyapunov numbers are the Eigenvalues of the limit
![\begin{displaymath}
\lim_{n\to\infty} [J(x_n,y_n)J(x_{n-1},y_{n-1})\cdots J(x_1,y_1)]^{1/n},
\end{displaymath}](l2_1264.gif)  | 
(5) | 
 
where 
 is the Jacobian
  | 
(6) | 
 
If 
 for all 
, the system is not Chaotic.  If 
 and the Map is
Area-Preserving (Hamiltonian), the product of
Eigenvalues is 1.
See also Adiabatic Invariant, Chaos, Lyapunov Characteristic Exponent
 
© 1996-9 Eric W. Weisstein 
1999-05-25