| 
 | 
 | 
Given an 
 Matrix 
, the Moore-Penrose generalized Matrix Inverse is a unique 
Matrix 
 which satisfies
| (1) | |||
| (2) | |||
| (3) | |||
| (4) | 
| (5) | 
| (6) | 
If the inverse of 
 exists, then
| (7) | 
| (8) | 
| (9) | 
See also Least Squares Fitting, Matrix Inverse
References
Ben-Israel, A. and Greville, T. N. E.  Generalized Inverses: Theory and Applications.  New York: Wiley, 1977.
 
Lawson, C. and Hanson, R.  Solving Least Squares Problems.  Englewood Cliffs, NJ: Prentice-Hall, 1974.
 
Penrose, R.  ``A Generalized Inverse for Matrices.''  Proc. Cambridge Phil. Soc. 51, 406-413, 1955.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein