| 
 | 
 | 
Let 
 be a number greater than 1, 
 a Positive number, and 
| (1) | 
Pisot (1938) proved that if 
 is such that there exists a 
 such that the series 
 converges, then 
 is an Algebraic Integer whose conjugates all (except for itself)
have modulus 
, and 
 is an algebraic Integer of the Field 
. Vijayaraghavan (1940) proved
that the set of Pisot-Vijayaraghavan numbers has infinitely many limit points. Salem (1944) proved that the set of
Pisot-Vijayaraghavan constants is closed.  The proof of this theorem is based on the Lemma that for a
Pisot-Vijayaraghavan constant 
, there always exists a number 
 such that 
 and the
following inequality is satisfied,
![]()  | 
(2) | 
| (3) | 
| (4) | 
| (5) | 
| (6) | 
| (7) | 
| number | order | Polynomial | |
| 0 | 1.3247179572 | 3 | 1 0  | 
| 1 | 1.3802775691 | 4 | 1  | 
| 1.6216584885 | 16 | 1  | 
|
| 1.8374664495 | 20 | 1  | 
All the points in 
 less than 
 are known (Dufresnoy and Pisot 1955).  Each point of 
 is a limit point
from both sides of the set 
 of Salem Constants (Salem 1945).
See also Salem Constants
References
Boyd, D. W.  ``Small Salem Numbers.''  Duke Math. J. 44, 315-328, 1977.
 
Dufresnoy, J. and Pisot, C.  ``Étude de certaines fonctions méromorphes bornées sur le cercle unité,
  application à un ensemble fermé d'entiers algébriques.''  Ann. Sci. École Norm. Sup. 72, 69-92, 1955.
 
Le Lionnais, F.  Les nombres remarquables.  Paris: Hermann, pp. 38 and 148, 1983.
 
Koksma, J. F.  ``Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins.''  Comp. Math. 2, 250-258, 1935.
 
Pisot, C.  ``La répartition modulo 1 et les nombres algébriques.''  Annali di Pisa 7, 205-248, 1938.
 
Salem, R.  ``Sets of Uniqueness and Sets of Multiplicity.''  Trans. Amer. Math. Soc. 54, 218-228, 1943.
 
Salem, R.  ``A Remarkable Class of Algebraic Numbers.  Proof of a Conjecture of Vijayaraghavan.''  Duke
  Math. J. 11, 103-108, 1944.
 
Salem, R.  ``Power Series with Integral Coefficients.''  Duke Math. J. 12, 153-172, 1945.
 
Siegel, C. L.  ``Algebraic Numbers whose Conjugates Lie in the Unit Circle.''  Duke Math. J. 11, 597-602, 1944.
 
Vijayaraghavan, T.  ``On the Fractional Parts of the Powers of a Number, II.'' Proc. Cambridge Phil. Soc. 37, 349-357, 1941.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein