Given a line 
 and a point 
), in slope-intercept form, the equation
of the line is 
  | 
(1) | 
 
so the line has Slope 
.  Points on the line have the vector coordinates
![\begin{displaymath}
\left[{\matrix{x\cr -{a\over b}x-{c\over d}\cr}}\right] = \l...
...r d}\cr}}\right]-{1\over b}\left[{\matrix{-b\cr a\cr}}\right].
\end{displaymath}](p2_770.gif)  | 
(2) | 
 
Therefore, the Vector 
![\begin{displaymath}
\left[{\matrix{-b\cr a\cr}}\right]
\end{displaymath}](p2_771.gif)  | 
(3) | 
 
is Parallel to the line, and the Vector
![\begin{displaymath}
{\bf v} =\left[{\matrix{a\cr b\cr}}\right]
\end{displaymath}](p2_772.gif)  | 
(4) | 
 
is Perpendicular to it. Now, a Vector from the point to the line is given by
![\begin{displaymath}
{\bf r} = \left[{\matrix{x-x_0\cr y-y_0\cr}}\right].
\end{displaymath}](p2_773.gif)  | 
(5) | 
 
Projecting 
 onto 
,
If the line is represented by the endpoints of a Vector 
 and 
, then the Perpendicular
Vector is
![\begin{displaymath}
\bf v= \left[{\matrix{y_2-y_1\cr -(x_2-x_1)\cr}}\right]
\end{displaymath}](p2_782.gif)  | 
(7) | 
 
![\begin{displaymath}
\hat{\bf v}= {1\over s}\left[{\matrix{y_2-y_1\cr -(x_2-x_1)\cr}}\right],
\end{displaymath}](p2_783.gif)  | 
(8) | 
 
where 
  | 
(9) | 
 
so the distance is
  | 
(10) | 
 
The distance from a point (
,
) to the line 
 can be computed using Vector algebra.  Let 
be a Vector in the same direction as the line
A given point on the line is
![\begin{displaymath}
{\bf x}=\left[{\matrix{x_1\cr y_1\cr}}\right]-\left[{\matrix{0\cr -a\cr}}\right] = \left[{\matrix{x_1\cr y_1-a\cr}}\right],
\end{displaymath}](p2_794.gif)  | 
(13) | 
 
so the point-line distance is
Therefore,
  | 
(15) | 
 
This result can also be obtained much more simply by noting that the Perpendicular distance is just 
times the vertical distance 
. But the Slope 
 is just 
, so
  | 
(16) | 
 
and
  | 
(17) | 
 
The Perpendicular distance is then
  | 
(18) | 
 
the same result as before.
See also Line, Point, Point-Line Distance--3-D
© 1996-9 Eric W. Weisstein 
1999-05-25