Let 
, and write
  | 
(1) | 
 
Then define 
 by the Generating Function
  | 
(2) | 
 
The Generating Function may also be written
![\begin{displaymath}
f(x,w)=(1-2xw+w^2)^{-1/2}\mathop{\rm exp}\nolimits \left[{(ax+b)\sum_{m=1}^\infty {w^m\over m} U_{m-1}(x)}\right],
\end{displaymath}](p2_1147.gif)  | 
(3) | 
 
where 
 is a Chebyshev Polynomial of the Second Kind.  They satisfy the Recurrence Relation
![\begin{displaymath}
nP_n(x;a,b)=[(2n-1+2a)x+2b]P_{n-1}(x;a,b)-(n-1)P_{n-2}(x;a,b)
\end{displaymath}](p2_1149.gif)  | 
(4) | 
 
for 
, 3, ...with
In terms of the Hypergeometric Function 
,
  | 
(7) | 
 
They obey the orthogonality relation
![\begin{displaymath}
\int_{-1}^1 P_n(x; a,b)P_m(x; a,b)w(x; a,b)\,dx=[n+{\textstyle{1\over 2}}(a+1)]^{-1} \delta_{nm},
\end{displaymath}](p2_1155.gif)  | 
(8) | 
 
where 
 is the Kronecker Delta, for 
, 1, ..., with the Weight Function
![\begin{displaymath}
w(\cos\theta; a,b)=e^{(2\theta-\pi)h(\theta)} \{\cosh[\pi h(\theta)]\}^{-1}.
\end{displaymath}](p2_1158.gif)  | 
(9) | 
 
References
Szegö, G.  Orthogonal Polynomials, 4th ed.  Providence, RI: Amer. Math. Soc., pp. 393-400, 1975.
 
© 1996-9 Eric W. Weisstein 
1999-05-25