| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Let 
 be the probability that a Random Walk on a 
-D lattice returns to the origin.  Pólya (1921) proved
that
| (1) | 
| (2) | 
| (3) | 
![]()  | 
(4) | ||
| (5) | |||
![]()  | 
(6) | ||
![]()  | 
(7) | ||
| (8) | 
| (9) | 
![]()  | 
|||
![]()  | 
(10) | 
| 4 | 0.20 | 
| 5 | 0.136 | 
| 6 | 0.105 | 
| 7 | 0.0858 | 
| 8 | 0.0729 | 
See also Random Walk
References
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/polya/polya.html
 
Domb, C.  ``On Multiple Returns in the Random-Walk Problem.''  Proc. Cambridge Philos. Soc. 50, 586-591, 1954.
 
Glasser, M. L. and Zucker, I. J.  ``Extended Watson Integrals for the Cubic Lattices.''  Proc. Nat. Acad. Sci. U.S.A. 74,
  1800-1801, 1977.
 
McCrea, W. H. and Whipple, F. J. W.  ``Random Paths in Two and Three Dimensions.''  Proc. Roy. Soc. Edinburgh 60, 281-298, 1940.
 
Montroll, E. W.  ``Random Walks in Multidimensional Spaces, Especially on Periodic Lattices.''  J. SIAM 4, 241-260, 1956.
 
Watson, G. N.  ``Three Triple Integrals.''  Quart. J. Math., Oxford Ser. 2 10, 266-276, 1939.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein