| 
 | 
 | 
A primitive root of a Prime 
 is an Integer 
 satisfying 
 such that the residue classes of 
,
, 
, ..., 
 are all distinct, i.e., 
 (mod 
) has Order 
 (Ribenboim
1996, p. 22).  If 
 is a Prime Number, then there are exactly 
 incongruent primitive roots of 
 (Burton 1989,
p. 194).
More generally, if 
 (
 and 
 are Relatively Prime) and 
 is of Order 
modulo 
, where 
 is the Totient Function, then 
 is a primitive root of 
 (Burton 1989, p. 187).  In other
words, 
 has 
 as a primitive root if 
, but 
 (mod 
) for all positive integers
.  A primitive root of a number 
 (but not necessarily
the smallest primitive root for composite 
) can be computed using the Mathematica
 routine NumberTheory`NumberTheoryFunctions`PrimitiveRoot[n].
If 
 has a primitive root, then it has exactly 
 of them (Burton 1989, p. 188).  For 
, 2, ..., the
first few values of 
 are 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 8, ... (Sloane's A010554).  
 has a
primitive root if it is of the form 2, 4, a power 
, or twice a power 
, where 
 is an Odd Prime and 
(Burton 1989, p. 204).  The first few 
 for which primitive roots exist are 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19,
22, ... (Sloane's A033948), so the number of primitive root of order 
 for 
, 2, ... are 0, 1, 1, 1, 2, 1, 2, 0, 2, 2,
4, 0, 4, (Sloane's A046144).
The smallest primitive roots for the first few Integers 
 are given in the following table (Sloane's A046145),
which omits 
 when 
 does not exist.
| 2 | 1 | 38 | 3 | 94 | 5 | 158 | 3 | 
| 3 | 2 | 41 | 6 | 97 | 5 | 162 | 5 | 
| 4 | 3 | 43 | 3 | 98 | 3 | 163 | 2 | 
| 5 | 2 | 46 | 5 | 101 | 2 | 166 | 5 | 
| 6 | 5 | 47 | 5 | 103 | 5 | 167 | 5 | 
| 7 | 3 | 49 | 3 | 106 | 3 | 169 | 2 | 
| 9 | 2 | 50 | 3 | 107 | 2 | 173 | 2 | 
| 10 | 3 | 53 | 2 | 109 | 6 | 178 | 3 | 
| 11 | 2 | 54 | 5 | 113 | 3 | 179 | 2 | 
| 13 | 2 | 58 | 3 | 118 | 11 | 181 | 2 | 
| 14 | 3 | 59 | 2 | 121 | 2 | 191 | 19 | 
| 17 | 3 | 61 | 2 | 122 | 7 | 193 | 5 | 
| 18 | 5 | 62 | 3 | 125 | 2 | 194 | 5 | 
| 19 | 2 | 67 | 2 | 127 | 3 | 197 | 2 | 
| 22 | 7 | 71 | 7 | 131 | 2 | 199 | 3 | 
| 23 | 5 | 73 | 5 | 134 | 7 | 202 | 3 | 
| 25 | 2 | 74 | 5 | 137 | 3 | 206 | 5 | 
| 26 | 7 | 79 | 3 | 139 | 2 | 211 | 2 | 
| 27 | 2 | 81 | 2 | 142 | 7 | 214 | 5 | 
| 29 | 2 | 82 | 7 | 146 | 5 | 218 | 11 | 
| 31 | 3 | 83 | 2 | 149 | 2 | 223 | 3 | 
| 34 | 3 | 86 | 3 | 151 | 6 | 226 | 3 | 
| 37 | 2 | 89 | 3 | 157 | 5 | 227 | 2 | 
Let 
 be 
any Odd Prime 
, and let
![]()  | 
(1) | 
| (2) | 
| (3) | 
| (4) | 
| (5) | 
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Primitive Roots.''  §24.3.4 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, p. 827, 1972.
 
Burgess, D. A.  ``On Character Sums and  
Sloane, N. J. A.  Sequences
A046145 and
A001918/M0242
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
-Series.''  Proc. London Math. Soc. 12, 193-206, 1962.Guy, R. K.  ``Primitive Roots.''  §F9 in 
  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 248-249, 1994.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein