| 
 | 
 | 
Given a Matrix A, its QR-decomposition is of the form
See also Cholesky Decomposition, LU Decomposition, Singular Value Decomposition
References
Householder, A. S.  The Numerical Treatment of a Single Non-Linear Equations.  New York: McGraw-Hill, 1970.
 
Nash, J. C.  Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd ed.
  Bristol, England: Adam Hilger, pp. 26-28, 1990.
 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.  ``QR Decomposition.''  §2.10 in
  Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.  Cambridge, England:
  Cambridge University Press, pp. 91-95, 1992.
 
Stewart, G. W.  ``A Parallel Implementation of the QR Algorithm.''  Parallel Comput. 5, 187-196, 1987.
  ftp://thales.cs.umd.edu/pub/reports/piqra.ps.