| 
 | 
 | 
Let 
 be the Divisor Function of 
.  Then two numbers 
 and 
 are 
a quasiamicable pair if
See also Amicable Pair
References
Beck, W. E. and Najar, R. M.  ``More Reduced Amicable Pairs.''  Fib. Quart. 15, 331-332, 1977.
 
Guy, R. K.  ``Quasi-Amicable or Betrothed Numbers.''
  §B5 in Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 59-60, 1994.
 
Hagis, P. and Lord, G.  ``Quasi-Amicable Numbers.''  Math. Comput. 31, 608-611, 1977.
 
Sloane, N. J. A.  Sequence
A005276/M5291
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.