| 
 | 
 | 
A Gaussian Quadrature-like formula for numerical estimation of integrals.  It requires 
 points and fits all
Polynomials to degree 
, so it effectively fits exactly all Polynomials of
degree 
.  It uses a Weighting Function 
 in which the endpoint 
 in the interval 
 is included
in a total of 
 Abscissas, giving 
 free abscissas. The general formula is
![]()  | 
(1) | 
| (2) | 
| (3) | 
| (4) | 
| (5) | 
| 2 | 0.5 | |
| 0.333333 | 1.5 | |
| 3 | 0.222222 | |
| 1.02497 | ||
| 0.689898 | 0.752806 | |
| 4 | 0.125 | |
| 0.657689 | ||
| 0.181066 | 0.776387 | |
| 0.822824 | 0.440924 | |
| 5 | 0.08 | |
| 0.446208 | ||
| 0.623653 | ||
| 0.446314 | 0.562712 | |
| 0.885792 | 0.287427 | 
The Abscissas and weights can be computed analytically for small 
.
| 2 | 
 | 
|
| 
 | 
 | 
|
| 3 | 
 | 
|
| 
 | 
 | 
|
| 
 | 
 | 
See also Chebyshev Quadrature, Lobatto Quadrature
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, p. 888, 1972.
 
Chandrasekhar, S.  Radiative Transfer.  New York: Dover, p. 61, 1960.
 
Hildebrand, F. B.  Introduction to Numerical Analysis.  New York: McGraw-Hill, pp. 338-343,
  1956.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein