| 
 | 
 | 
Let 
 be a discriminant,
| (1) | 
![]()  | 
|||
![]()  | 
(2) | ||
![]()  | 
|||
![]()  | 
(3) | ||
![]()  | 
|||
![]()  | 
(4) | 
See also Klein's Absolute Invariant, Pi
References
Borwein, J. M. and Borwein, P. B.  ``Class Number Three Ramanujan Type Series for  
Ramanujan, S.  ``Modular Equations and Approximations to  
.''
  J. Comput. Appl. Math. 46, 281-290, 1993.
.''  Quart. J. Pure Appl. Math. 45, 350-372, 1913-1914.