| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Given the Closed Interval 
 with 
, let 1-D ``cars'' of unit length be parked randomly on the interval. 
The Mean number 
 of cars which can fit (without overlapping!) satisfies
| (1) | 
![]()  | 
|||
| (2) | 
| (3) | 
![]()  | 
(4) | 
| (5) | 
Let 
 be the variance of the number of cars, then Dvoretzky and Robbins (1964) and 
Mannion (1964) showed that
![]()  | 
|||
![]()  | 
|||
![]()  | 
(6) | 
where
| (7) | |||
![]()  | 
(8) | 
| (9) | 
![]()  | 
(10) | 
Palasti (1960) conjectured that in 2-D,
| (11) | 
References
Blaisdell, B. E. and Solomon, H.  ``On Random Sequential Packing in the Plane and a Conjecture of Palasti.''
  J. Appl. Prob. 7, 667-698, 1970.
 
Dvoretzky, A. and Robbins, H.  ``On the Parking Problem.''  Publ. Math. Inst. Hung. Acad. Sci. 9, 209-224, 1964.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/renyi/renyi.html
 
Mannion, D.  ``Random Space-Filling in One Dimension.''  Publ. Math. Inst. Hung. Acad. Sci. 9, 143-154, 1964.
 
Palasti, I.  ``On Some Random Space Filling Problems.'' Publ. Math. Inst. Hung. Acad. Sci. 5, 353-359, 1960.
 
Rényi, A.  ``On a One-Dimensional Problem Concerning Random Space-Filling.''
  Publ. Math. Inst. Hung. Acad. Sci. 3, 109-127, 1958.
 
Solomon, H. and Weiner, H. J. ``A Review of the Packing Problem.''  Comm. Statist. Th. Meth. 15, 2571-2607, 1986.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein