| 
 | 
 | 
A Room square (named after T. G. Room) of order 
 (for 
 Even) is an arrangement in an 
 Square
Matrix of 
 objects such that each cell is either empty or holds exactly two different objects.  Furthermore, each object
appears once in each row and column and each unordered pair occupies exactly one cell.  The Room square of order 2 is shown
below.
| 1,2 | 
The Room square of order 8 is
| 1,8 | 5,7 | 3,4 | 2,6 | |||
| 3,7 | 2,8 | 6,1 | 4,5 | |||
| 5,6 | 4,1 | 3,8 | 7,2 | |||
| 6,7 | 5,2 | 4,8 | 1,3 | |||
| 2,4 | 7,1 | 6,3 | 5,8 | |||
| 3,5 | 1,2 | 7,4 | 6,8 | |||
| 4,6 | 2,3 | 1,5 | 7,8 | 
References
Dinitz, J. H. and Stinson, D. R.  In Contemporary Design Theory: A Collection of Surveys (Ed. J. H. Dinitz and D. R. Stinson).
  New York: Wiley, 1992.
 
Gardner, M. Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 146-147 and
  151-152, 1988.
 
Mullin, R. C. and Nemeth, E. ``On Furnishing Room Squares.'' J. Combin. Th. 7, 266-272, 1969.
 
Mullin, R. D. and Wallis, W. D. ``The Existence of Room Squares.'' Aequationes Math. 13, 1-7, 1975.
 
O'Shaughnessy, C. D. ``On Room Squares of Order  
Room, T. G. ``A New Type of Magic Square'' (Note 2569).  Math. Gaz. 39, 307, 1955.
 
Wallis, W. D. ``Solution of the Room Square Existence Problem.'' J. Combin. Th. 17, 379-383, 1974.
 
.'' J. Combin. Th. 13, 306-314, 1972.