| 
 | 
 | 
A Fractal described by Sierpinski in 1915. It is also called the Sierpinski Gasket or Sierpinski Triangle. The curve can be written as a Lindenmayer System with initial string "FXF-FF-FF", String Rewriting rules "F" -> "FF", "X" -> "-FXF++FXF++FXF-", and angle 60°.
Let 
 be the number of black triangles after iteration
, 
 the length of a side of a triangle, and 
 the fractional Area which is black after the 
th
iteration.  Then
| (1) | |||
| (2) | |||
| (3) | 
![]()  | 
|||
| (4) | 
See also Lindenmayer System, Sierpinski Arrowhead Curve, Sierpinski Carpet, Tetrix
References
Crownover, R. M.  Introduction to Fractals and Chaos.  Sudbury, MA: Jones & Bartlett, 1995.
 
Dickau, R. M.  ``Two-Dimensional L-Systems.''
http://forum.swarthmore.edu/advanced/robertd/lsys2d.html.
 
Dickau, R. M.  ``Typeset Fractals.''  Mathematica J. 7, 15, 1997.
 
 
 
Lauwerier, H.  Fractals: Endlessly Repeated Geometric Figures.  Princeton, NJ: Princeton University Press,
  pp. 13-14, 1991.
 
Peitgen, H.-O.; Jürgens, H.; and Saupe, D.  Chaos and Fractals: New Frontiers of Science.
  New York: Springer-Verlag, pp. 78-88, 1992.
 
Peitgen, H.-O. and Saupe, D. (Eds.).  The Science of Fractal Images.  New York: Springer-Verlag, p. 282, 1988.
 
Wagon, S.  Mathematica in Action.  New York: W. H. Freeman, pp. 108 and 151-153, 1991.
 
Wang, P.  ``Renderings.''  http://www.ugcs.caltech.edu/~peterw/portfolio/renderings/.
 
 
 Dickau, R.  ``Sierpinski-Menger Sponge Code and Graphic.''
http://www.mathsource.com/cgi-bin/MathSource/Applications/Graphics/0206-110.
 Weisstein, E. W.  ``Fractals.''  Mathematica notebook Fractal.m.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein