A Partial Differential Equation which appears in differential geometry and relativistic field theory.  Its name is
a pun on its similar form to the Klein-Gordon Equation.  The sine-Gordon equation is
  | 
(1) | 
 
where 
 and 
 are Partial Derivatives.
The equation can be transformed by defining
  | 
(2) | 
 
  | 
(3) | 
 
giving
  | 
(4) | 
 
Traveling wave analysis gives
![\begin{displaymath}
z-z_0=\sqrt{c^2-1} \int{df \over \sqrt{2[d-2\sin^2({\textstyle{1\over 2}}f)]}}.
\end{displaymath}](s1_1474.gif)  | 
(5) | 
 
For 
,
![\begin{displaymath}
z-z_0=\pm\sqrt{1-c^2}\,\ln[\pm \tan({\textstyle{1\over 4}}f)]
\end{displaymath}](s1_1476.gif)  | 
(6) | 
 
![\begin{displaymath}
f(z)= \pm 4\tan^{-1} [e^{\pm (z-z_0)/(1-c^2)^{1/2}}].
\end{displaymath}](s1_1477.gif)  | 
(7) | 
 
Letting 
 then gives
  | 
(8) | 
 
Letting 
 gives
  | 
(9) | 
 
which is the third Painlevé Transcendent.  Look for a solution of the form
![\begin{displaymath}
v(x,t)=4\tan^{-1}\left[{\phi(x)\over \psi(t)}\right].
\end{displaymath}](s1_1482.gif)  | 
(10) | 
 
Taking the partial derivatives gives
which can be solved in terms of Elliptic Functions.  A single Soliton solution 
exists with 
, 
:
![\begin{displaymath}
v=4\tan^{-1}\left[{\mathop{\rm exp}\nolimits \left({\pm x-\beta t\over \sqrt{1-\beta^2}}\right)}\right],
\end{displaymath}](s1_1489.gif)  | 
(13) | 
 
where
  | 
(14) | 
 
A two-Soliton solution exists with 
, 
:
![\begin{displaymath}
v=4\tan^{-1}\left[{\sinh(\beta mx)\over \beta\cosh(\beta mt)}\right].
\end{displaymath}](s1_1491.gif)  | 
(15) | 
 
A Soliton-antisoliton solution exists with 
, 
, 
:
![\begin{displaymath}
v=-4\tan^{-1}\left[{\sinh(\beta mx)\over\beta\cosh(mt)}\right].
\end{displaymath}](s1_1495.gif)  | 
(16) | 
 
A ``breather'' solution is
![\begin{displaymath}
v=-4\tan^{-1}\left[{{m\over\sqrt{1-m^2}} {\sin(\sqrt{1-m^2t}\,)\over\cosh(mx)}}\right].
\end{displaymath}](s1_1496.gif)  | 
(17) | 
 
References
Infeld, E. and Rowlands, G.  Nonlinear Waves, Solitons, and Chaos.  Cambridge, England:
  Cambridge University Press, pp. 199-200, 1990.
© 1996-9 Eric W. Weisstein 
1999-05-26