| 
 | 
 | 
A number which is simultaneously Square and Triangular. The first few are
1, 36, 1225, 41616, 1413721, 48024900, ... (Sloane's A001110), corresponding to 
, 
, 
,
, 
, ... (Pietenpol 1962), but there are an infinite number, as first shown by
Euler 
 in 1730 (Dickson 1952).
The general Formula for a square triangular number 
 is 
, where 
 is the 
th convergent to the
Continued Fraction of 
 (Ball and Coxeter 1987, p. 59; Conway and Guy 1996).  The first few are
| (1) | 
| (2) | 
| (3) | 
| (4) | |||
| (5) | 
| (6) | 
| (7) | 
A general Formula for square triangular numbers is
![]()  | 
(8) | ||
| (9) | 
| (10) | |||
| (11) | 
![]()  | 
(12) | 
| (13) | 
See also Square Number, Square Root, Triangular Number
References
Allen, B. M.  ``Squares as Triangular Numbers.''  Scripta Math. 20, 213-214, 1954.
 
Ball, W. W. R. and Coxeter, H. S. M.  Mathematical Recreations and Essays, 13th ed.  New York: Dover, 1987.
 
Conway, J. H. and Guy, R. K.  The Book of Numbers.  New York: Springer-Verlag, pp. 203-205, 1996.
 
Dickson, L. E.  A History of the Theory of Numbers, Vol. 2: Diophantine Analysis.
  New York: Chelsea, pp. 10, 16, and 27, 1952.
 
Guy, R. K.  ``Sums of Squares'' and ``Figurate Numbers.''  §C20 and §D3 in 
  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 136-138
  and 147-150, 1994.
 
Khatri, M. N.  ``Triangular Numbers Which are Also Squares.''  Math. Student 27, 55-56, 1959.
 
Pietenpol, J. L.  ``Square Triangular Numbers.'' Problem E 1473.  Amer. Math. Monthly 69, 168-169, 1962.
 
Sierpinski, W.  Teoria Liczb, 3rd ed.  Warsaw, Poland: Monografie Matematyczne t. 19, p. 517, 1950.
 
Sierpinski, W.  ``Sur les nombres triangulaires carrés.''  Pub. Faculté d'Électrotechnique 
  l'Université Belgrade, No. 65, 1-4, 1961.
 
Sierpinski, W.  ``Sur les nombres triangulaires carrés.''  Bull. Soc. Royale Sciences Liège, 30 ann., 189-194, 1961.
 
Sloane, N. J. A.  Sequence
A001110/M5259
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Walker, G. W.  ``Triangular Squares.''  Problem E 954.  Amer. Math. Monthly 58, 568, 1951.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein