| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Expanding the Riemann Zeta Function about 
 gives
![]()  | 
(1) | 
![]()  | 
(2) | 
| (3) | 
| 0 | 0.5772156649 | 
| 1 | 
 | 
| 2 | 
 | 
| 3 | 0.002053834420 | 
| 4 | 0.002325370065 | 
| 5 | 0.0007933238173 | 
Briggs (1955-1956) proved that there infinitely many 
 of each Sign.  Berndt (1972) gave upper bounds of
![]()  | 
(4) | 
![]()  | 
(5) | 
![]()  | 
(6) | 
A set of constants related to 
 is
![]()  | 
(7) | 
References
Berndt, B. C.  ``On the Hurwitz Zeta-Function.''  Rocky Mountain J. Math. 2, 151-157, 1972.
 
Bohman, J. and Fröberg, C.-E.  ``The Stieltjes Function--Definitions and Properties.''  Math. Comput.
  51, 281-289, 1988.
 
Briggs, W. E.  ``Some Constants Associated with the Riemann Zeta-Function.''  Mich. Math. J. 3, 117-121,
  1955-1956.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/stltjs/stltjs.html
 
Hardy, G. H.  ``Note on Dr. Vacca's Series for  
Kluyver, J. C.  ``On Certain Series of Mr. Hardy.''  Quart. J. Pure Appl. Math. 50, 185-192, 1927.
 
Knopfmacher, J.  ``Generalised Euler Constants.''  Proc. Edinburgh Math. Soc. 21, 25-32, 1978.
 
Lehmer, D. H.  ``The Sum of Like Powers of the Zeros of the Riemann Zeta Function.''  Math. Comput. 50,
  265-273, 1988.
 
Liang, J. J. Y. and Todd, J.  ``The Stieltjes Constants.''  J. Res. Nat. Bur. Standards--Math. Sci. 76B,
  161-178, 1972.
 
Sitaramachandrarao, R.  ``Maclaurin Coefficients of the Riemann Zeta Function.''  Abstracts Amer. Math. Soc.
  7, 280, 1986.
 
Vacca, G.  ``A New Series for the Eulerian Constant.''  Quart. J. Pure Appl. Math. 41, 363-368, 1910.
 
.''  Quart. J. Pure Appl. Math. 43, 215-216,
  1912.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein