| 
 | 
 | 
The usual number of scalar operations (i.e., the total number of additions and multiplications) required to
perform 
 Matrix Multiplication is
| (1) | 
| (2) | 
| (3) | |||
| (4) | 
| (5) | 
Two 
 matrices can therefore be multiplied 
| (6) | 
| (7) | 
| (8) | 
| (9) | |||
| (10) | |||
| (11) | |||
| (12) | |||
| (13) | |||
| (14) | |||
| (15) | 
| (16) | |||
| (17) | |||
| (18) | |||
| (19) | 
Matrix inversion of a 
 matrix 
 to yield 
 can also be done in fewer operations
than expected using the formulas
| (20) | |||
| (21) | |||
| (22) | |||
| (23) | |||
| (24) | |||
| (25) | |||
| (26) | |||
| (27) | |||
| (28) | |||
| (29) | |||
| (30) | 
See also Complex Multiplication, Karatsuba Multiplication
References
Coppersmith, D. and Winograd, S.  ``Matrix Multiplication via Arithmetic Programming.''  J. Symb. Comput. 9, 251-280, 1990.
 
Pan, V.  How to Multiply Matrices Faster.  New York: Springer-Verlag, 1982.
 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.  ``Is Matrix Inversion an  
Strassen, V.  ``Gaussian Elimination is Not Optimal.''  Numerische Mathematik 13, 354-356, 1969.
 
 Process?''
  §2.11 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.
  Cambridge, England: Cambridge University Press, pp. 95-98, 1989.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein