| 
 | 
 | 
Abramowitz and Stegun (1972, pp. 496-499) define the Struve function as
![]()  | 
(1) | 
| (2) | 
![]()  | 
(3) | 
![]()  | 
(4) | ||
| (5) | 
| (6) | 
See also Anger Function, Bessel Function, Modified Struve Function, Weber Functions
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Struve Function 
 
Spanier, J. and Oldham, K. B.  ``The Struve Function.''  Ch. 57 in An Atlas of Functions.
  Washington, DC: Hemisphere, pp. 563-571, 1987.
 
Watson, G. N.  A Treatise on the Theory of Bessel Functions, 2nd ed.  Cambridge, England: Cambridge University
  Press, 1966.
 
.''  §12.1 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 496-498, 1972.