  | 
(1) | 
 
Alternate forms are
  | 
(2) | 
 
where
  | 
(3) | 
 
![\begin{displaymath}
{d^2u\over dx^2}+\left[{{(n+\lambda)^2\over 1-x^2}+{{\textst...
...lambda^2+{\textstyle{1\over 4}}x^2\over (1-x^2)^2}}\right]u=0,
\end{displaymath}](u_48.gif)  | 
(4) | 
 
where
  | 
(5) | 
 
and
![\begin{displaymath}
{d^2u\over d\theta^2}+\left[{(n+\lambda)^2+{\lambda(1-\lambda)\over\sin^2\theta}}\right]u=0,
\end{displaymath}](u_50.gif)  | 
(6) | 
 
where
  | 
(7) | 
 
The solutions are the Ultraspherical Functions 
.  For integral 
 with 
, the
function converges to the Ultraspherical Polynomials 
.
References
Morse, P. M. and Feshbach, H.  Methods of Theoretical Physics, Part I.  New York:
  McGraw-Hill, pp. 547-549, 1953.
 
© 1996-9 Eric W. Weisstein 
1999-05-26