| 
 | 
 | 
Wavelets are a class of a functions used to localize a given function in both space and scaling.  A family of wavelets can
be constructed from a function 
, sometimes known as a ``mother wavelet,'' which is confined in a finite interval.
``Daughter wavelets'' 
 are then formed by translation (
) and contraction (
).  Wavelets are especially useful
for compressing image data, since a Wavelet Transform has properties which are in some ways superior to a conventional
Fourier Transform.
An individual wavelet can be defined by
| (1) | 
| (2) | 
| (3) | 
See also Fourier Transform, Haar Function, Lemarié's Wavelet, Wavelet Transform
References
 
Benedetto, J. J. and Frazier, M. (Eds.).  Wavelets: Mathematics and Applications.  Boca Raton, FL: CRC Press, 1994.
 
Chui, C. K.  An Introduction to Wavelets.  San Diego, CA: Academic Press, 1992.
 
Chui, C. K. (Ed.).  Wavelets: A Tutorial in Theory and Applications.  San Diego, CA: Academic Press, 1992.
 
Chui, C. K.; Montefusco, L.; and Puccio, L. (Eds.).  Wavelets: Theory, Algorithms, and Applications.
  San Diego, CA: Academic Press, 1994.
 
Daubechies, I.  Ten Lectures on Wavelets.  Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.
 
Erlebacher, G. H.; Hussaini, M. Y.; and Jameson, L. M. (Eds.).  Wavelets: Theory and Applications.
  New York: Oxford University Press, 1996.
 
Foufoula-Georgiou, E. and Kumar, P. (Eds.).  Wavelets in Geophysics.  San Diego, CA: Academic Press, 1994.
 
Hernández, E. and Weiss, G.  A First Course on Wavelets.  Boca Raton, FL: CRC Press, 1996.
 
Hubbard, B. B.  The World According to Wavelets: The Story of a Mathematical Technique in the Making.  New York:
  A. K. Peters, 1995.
 
Jawerth, B. and Sweldens, W.  ``An Overview of Wavelet Based Multiresolution Analysis.''  SIAM Rev. 36, 377-412, 1994.
 
Kaiser, G.  A Friendly Guide to Wavelets.  Cambridge, MA: Birkhäuser, 1994.
 
Massopust, P. R.  Fractal Functions, Fractal Surfaces, and Wavelets.  San Diego, CA: Academic Press, 1994.
 
Meyer, Y.  Wavelets: Algorithms and Applications.  Philadelphia, PA: SIAM Press, 1993.
 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.  ``Wavelet Transforms.'' §13.10 in
  Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.  Cambridge, England: Cambridge 
  University Press, pp. 584-599, 1992.
 
Schumaker, L. L. and Webb, G. (Eds.).  Recent Advances in Wavelet Analysis.  San Diego, CA: Academic Press, 1993.
 
Stollnitz, E. J.; DeRose, T. D.; and Salesin, D. H.  ``Wavelets for Computer Graphics: A Primer, Part 1.''
  IEEE Computer Graphics and Appl. 15, No. 3, 76-84, 1995.
 
Stollnitz, E. J.; DeRose, T. D.; and Salesin, D. H.  ``Wavelets for Computer Graphics: A Primer, Part 2.''
  IEEE Computer Graphics and Appl. 15, No. 4, 75-85, 1995.
 
Strang, G.  ``Wavelets and Dilation Equations: A Brief Introduction.''  SIAM Rev. 31, 614-627, 1989.
 
Strang, G.  ``Wavelets.''  Amer. Sci. 82, 250-255, 1994.
 
Taswell, C.  Handbook of Wavelet Transform Algorithms.  Boston, MA: Birkhäuser, 1996.
 
Teolis, A.  Computational Signal Processing with Wavelets.  Boston, MA: Birkhäuser, 1997.
 
Walter, G. G.  Wavelets and Other Orthogonal Systems with Applications.  Boca Raton, FL: CRC Press, 1994.
 
``Wavelet Digest.''  http://www.math.sc.edu/~wavelet/.
 
Wickerhauser, M. V.  Adapted Wavelet Analysis from Theory to Software.  Wellesley, MA: Peters, 1994.
 
 Wavelets
| 
 | 
 | 
© 1996-9 Eric W. Weisstein