| 
 | 
 | 
A generalization of Clebsch-Gordan Coefficients and Wigner 3j-Symbol which arises in the coupling of three angular momenta.  Let tensor operators 
 and 
act, respectively, on subsystems 1 and 2 of a system, with subsystem 1 characterized by angular momentum 
 and
subsystem 2 by the angular momentum 
.  Then the matrix elements of the scalar product of these two tensor
operators in the coupled basis 
 are given by
| 
 | 
|
 
 | 
(1) | 
 is the Wigner 
Edmonds (1968) gives analytic forms of the 
-symbol for simple cases, and Shore and Menzel (1968) and Gordy and Cook (1984) give
 
 | 
(2) | 
 
 | 
(3) | 
 
 | 
(4) | 
| (5) | |||
| (6) | 
See also Clebsch-Gordan Coefficient, Racah V-Coefficient, Racah W-Coefficient, Wigner 3j-Symbol, Wigner 9j-Symbol
References
Carter, J. S.; Flath, D. E.; and Saito, M.  The Classical and Quantum  
Edmonds, A. R.  Angular Momentum in Quantum Mechanics, 2nd ed., rev. printing.
  Princeton, NJ: Princeton University Press, 1968.
 
Gordy, W. and Cook, R. L.  Microwave Molecular Spectra, 3rd ed.  New York: Wiley, pp. 807-809, 1984.
 
Messiah, A.  ``Racah Coefficients and ` 
Rotenberg, M.; Bivens, R.; Metropolis, N.; and Wooten, J. K.  The  
Shore, B. W. and Menzel, D. H.  Principles of Atomic Spectra.  New York: Wiley, pp. 279-284, 1968.
 
-Symbols.  Princeton, NJ:
  Princeton University Press, 1995.
' Symbols.''  Appendix C.II in Quantum Mechanics, Vol. 2.
  Amsterdam, Netherlands: North-Holland, pp. 567-569 and 1061-1066, 1962.
 and 
 Symbols.  Cambridge, MA: MIT Press, 1959.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein